SIZE DEPENDENT EFFECTS

Antibacterial activity of silver-modified natural clinoptilolite

Violeta Elena Copcia · Camelia Luchian · Simona Dunca · Nicolae Bilba · Claudia Mihaela Hristodor

Received: 17 December 2010/Accepted: 13 May 2011/Published online: 1 June 2011 © Springer Science+Business Media, LLC 2011

Abstract The aim of the present work was to estimate the bactericidal activity and efficacy of silver pre-treated clinoptilolite-rich tuff from Marsid (Romania) in solid media (agar plates) against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923. Two samples of natural clinoptilolite-rich tuff was first pre-treated with oxalic acid and sodium hydroxide solutions, respectively. The sample treated with oxalic acid was then exchanged with sodium chloride solution to obtain sodium form. Finally, both samples were exchanged with silver nitrate solution at room temperature for 24 h to obtain silver forms (P1-Ag⁺ and P2-Ag⁺) of clinoptilolite. The structure, morphology, and elemental composition of the pre-treated clinoptilolite samples were characterized by XRD, infrared (ATR-IR), SEM, and EDX analysis. The antibacterial activity was investigated by exposing E. coli and S. aureus in nutritive agar to the silver-clinoptilolite samples. Microorganisms were completely inhibited at 2 mg Ag+-clinoptilolite/mL nutritiv medium after 24 h of incubation at 37 °C. The silverclinoptilolite sample derived from natural clinoptilolite pre-treated with oxalic acid (P1-Ag⁺) exhibit a stronger antibacterial effect in the presence of E. coli and the sample derived from natural clinoptilolite pre-treated with sodium hydroxide (P2-Ag⁺) in the presence of S. aureus.

V. E. Copcia (⊠) · C. Luchian · N. Bilba · C. M. Hristodor Materials Chemistry Laboratory, Faculty of Chemistry, "Al. I. Cuza" University of Iasi, Bvd. Carol I, no 11, 700506 Iasi, Romania e-mail: vioely2003@yahoo.com

S. Dunca

Faculty of Biology, "Al. I. Cuza" University of Iasi, Bvd. Carol I, no 11, 700506 Iasi, Romania

Introduction

Microorganisms exist every day in our living environment. Some of the microorganisms help ecologic cycles, but some others are responsible for diseases among people, animals, and plants [1]. Growth and death of microorganisms are influenced by environmental factors such as temperature, pH, oxygen level, pressure, and radiation light. In the prevention of contamination or the sterilization of contaminated materials, antimicrobial agents are used. Alcohols, phenols, halogenated compounds, quaternary ammonium salts, heavy metal ions (Ag⁺, Zn²⁺, Cu²⁺, Fe^{2+/3+}, Cd²⁺, Pd²⁺), silver nanoparticles, metal oxides (ZnO, MgO, Ag₂O), zirconium phosphates, oxidizing agents (chlorine and its derivates, ozone), heat, and UV light are used as chemical and physical agents [2–12].

Due to its broad-spectrum antibacterial and antimicrobial properties, the lack of toxicity to humans, high degree of biocompatibility, excellent resistance to sterilization conditions and a long-term of antibacterial efficiency, silver as metal, nanoparticles, and ions is the mostly used antibacterial agent to control bacterial growth [2–4, 8, 13–18]. Silver in the form of nanoparticles is very effective antimicrobial and is used in diverse medical applications ranging from silverbased dressings to silver-coated medical devices [17-24]. Silver and silver compounds could be used in water disinfection [2, 4, 6, 25–28], food packaging or handling [29–31], medical tools [20, 32–38], dental work [34, 37], wound-care products [19, 21, 39-41], textiles [23, 42, 43], and in antibacterial glass (http://www.agc-flatglass.eu/AGC+Flat+ Glass+Europe/English). Silver in its non-ionized bulk form (metallic silver) has no antibacterial activity [38]. However, when metallic silver is exposed to an aqueous environments, some silver ions (Ag⁺) are released and antibacterial activity is present [41, 44]. Silver in ionic form of Ag⁺ (silver salts soluble and silver ion doped or ion exchanged into organic and inorganic materials) or Ag^0 in clusters (nanoparticles) is very powerful and effective antimicrobial agent [40].

An antibacterial agent such as a silver plate, silver nitrate solution, or silver sulfadiazine could be directly used but it is not preferred because of high cost. It is preferable to prepare antibacterial silver in a supported material having a high-specific surface area and porosity. Silver dispersed in a carrier support material such as polymers [11, 31, 35, 38, 44], metal oxides [45, 46], silica [47, 48], glass (http://www.agc-flatglass.eu/AGC+Flat+Glass+Europe/English) [49, 50], clays [31, 51, 52], synthetic zeolites LTA [36, 37, 53–57], LTX [57, 58], LTY [57], ETS-10 [59], and natural zeolites mordenite [57] and clinoptilolite [2, 25–27, 60–62] seen to be the most common and economical way due to their user friendly handling, non-toxicity, and the control of long-term release rate.

Among these support materials, zeolites have been intensively studied because they possess active sites where cationic exchange could occur, are stable in aqueous solutions at different pH, are non-reactive, and allow a controlled and effective release of the silver ions. Zeolites acquire microbicidal properties after being ion exchanged with one or more "antibiotic cations" (Ag^+ , Zn^{2+} , Cu^{2+}) often in combination with ammonium, NH_4^+ [55]. Silver and zinc containing zeolite LTA (AgION-antimicrobial in USA and Zeomic[®] in Japan and Canada) is already used to coat stainless steel surfaces, polymers, and aluminum panels for medical, air salubrity, food packaging, and industrial applications and for consumers [36, 63]. It has been reported that silver-zeolite inhibits the growth of bacteria under aerobic [28] and anaerobic conditions [37].

Clinoptilolite is crystalline, hydrated aluminosilicate (Si/Al > 4) of alkali and alkaline earth metals having an infinite, open, three-dimensional structure, three types of non-planar channels limited by a system of 8 and 10 tet-rahedral elliptic-shaped rings with free diameters of 0.41×0.47 nm, 0.40×0.55 nm, and 0.44×0.72 nm, respectively, a porosity of about 34% and a cationic exchange capacity (CEC) up to 2.3 meq/g [64, 65]. The exchangeable cations are located in the specific sites of clinoptilolite, coordinated with different number of water molecules and oxygen atom.

Clinoptilolite is the most researched of all natural zeolites as a carrier support for silver ions and for antibacterial activity [2, 25–27, 60–62], thanks to the ability of Ag^+ to move out of the network into aqueous media, that maintain the killing concentration for a long time. The stopping of the growth and reproduction of the bacteria by Ag^+ ions is explained by two mechanisms: one is the action of silver ion itself by blockage of the cellular surface and interaction with the deoxyribonucleic acid of the cell [8, 10, 13, 15, 16, 44, 47, 66], and the other by the reactive oxygen species (superoxide anions, hydrogen peroxide, hydroxyl radicals, and singlet oxygen) generated catalytically from silver in the aluminosilicate matrix [28]. The silver ions inhibit transport functions in the cell wall (respiration), inhibit cell division (reproduction), and interrupt cell energy generation (metabolism).

The aim of the present study is to characterize and to evaluate the antibacterial activity of silver-modified natural clinoptilolite in solid media (agar nutritive) against the cells of *Escherichia coli* and Methicillin resistant *Staphylococcus aureus*. The effect of Ag⁺-clinoptilolite (g) to mL of solid media ratio was investigated.

Experimental procedures

Materials

The clinoptilolite-rich tuff employed in the current study was a natural zeolite from Marsid deposit, Romania. The as-received zeolitic mineral was powdered and sieved. The powder with the particle size of 0.1 mm was selected to carry out the experimentations.

The entire chemicals used in the experiments were Merck analytical reagent grade.

Escherichia coli ATCC 25922 and *Staphylococcus aureus* ATCC 25923 used in antibacterial tests were obtained from the American Type Culture Collection (ATCC).

Preparation of Ag⁺-modified clinoptilolite

In the natural clinoptilolite-rich tuff (P0) with chemical composition of 68.54% SiO₂, 11.95% Al₂O₃, 3.35% CaO, 2.80% K₂O, 0.70% MgO, 0.40% Na₂O, 0.86%Fe₂O₃, and LOI 11.40%, the major component ($65 \pm 5\%$) is clinoptilolite in multicationic form together with some impurities such as clays (illite), feldspars, and quartz.

In order to improve the clinoptilolite content and the cationic exchange capacity, the natural zeolite mineral on the one hand was acid treated with 1 M oxalic acid $(H_2C_2O_4.2H_2O)$ solution and, on the other hand, was basic treated with 1 M sodium hydroxide (NaOH) at 100 °C for 5 h with a liquid/solid ratio of 5:1. The solids, P1-H and P2-Na⁺, were vacuum filtered, washed several times with deionized water, and dried at 105 °C for 6 h. The acid-treated sample (P1-H) was then exchanged in Na⁺ form (P1-Na⁺) by treatment (three times) with 1 M NaCl solution at 100 °C for 24 h and then washed with deionized water until Cl⁻ ions were not detected and dried at 105 °C for 6 h. Na⁺-forms are preferred for the ion exchange

processes because Na⁺ is the most weakly bound ion in clinoptilolite.

The location of Na⁺ cation in the structure of clinoptilolite [64, 67], the channel dimensions, and the hydrated ionic radii of Na^+ (3.58 Å) are involved in the easily exchange with hydrated Ag^+ ion (3.43 Å) [68]. The Na⁺ cations are preferable for Ag^+ instead of Ca²⁺ (4.12 Å), K^+ (3.31 Å), and Mg^{2+} (4.28 Å) found in the natural clinoptilolite. The two samples of clinoptilolite in near homoionic form of Na⁺ (P1-Na⁺ and P2-Na⁺) were suspended in 0.1 M AgNO₃ solution at room temperature for 24 h in the dark (threefold with fresh solution), adjusting the solution to pH 5.0, with intermittent shaking to obtain the silver-loaded clinoptilolite named P1-Ag⁺ and P2-Ag⁺. The resulting solids were separated by filtration, washed with deionized water several times, and dried overnight at room temperature. If the pH of exchange is greater than 7.5–8, the samples become dark because Ag^+ in the zeolite turned to Ag⁰. The amount of silver found in modified clinoptilolite-rich tuff samples correspond to 1.9 meq Ag/g in the P1-Ag⁺ and to 1.2 meq Ag/g in the P2-Ag⁺.

Characterization of natural and silver-modified clinoptilolite

X-ray powder diffraction (XRD) data of the crystalline materials were collected on a Philips PW 3710 diffractometer using Ni-filtered Cu K_{α} radiation. The patterns were obtained between 5° and 70° 2 θ .

The ATR-IR spectra (Attenuated Total Reflectance) were recorded with the Illuminat IR, Smits Detection Instrument and Contact IR^{TM} Diamond ATR.

Scanning electron micrographs were obtained from a VEGA 11 LSH scanning electron microscope (TESCAN, Czech Republic). Samples were deposited on a sample holder with an adhesive carbon foil.

The energy dispersive X-ray spectra-EDX patterns were carried out using a Quantax QX2 system (Bruker/Roentec, Germany).

Procedure for qualitatively determination of zone of inhibition

The strains of microorganisms were cultured aerobically at 37 °C for 18 h in 10 mL nutrient broth. 20 ± 2 mL of sterilized nutrient agar (solid media) was dispersed into each standard flat bottom Petri dish to obtain firmly solid agar before inoculating. 2 mL of inoculum from the 10 times diluted inoculum cultured was transferred on the surface of the sterile agar area of a Petri dish. After that the tested silver-clinoptilolite sample was gently pressed to contact intimately the agar surface and the inoculum. The obtained mixtures were incubated at 37 °C for 24 h. The

antibacterial activity is evident when a clear zone of inhibition of bacterial growth around the tested silver-clinoptilolite becomes visible.

Procedure for determination antibacterial activity

The inoculum was obtained from aerobical bacterial culture test (*E. coli* and *S. aureus*), after sowing in nutrient broth at 37 °C for 18 h, 37 °C being the optimum growth temperature of bacteria. The different quantity of silvermodified clinoptilolite tested (P1-Ag⁺ and P2-Ag⁺) were added into culture medium and sterilized at 121 °C for 30 min, after that were seeding with bacterial inoculum, represented by the *E. coli* and *S. aureus*, respectively. Incubation was performed at 37 °C for 24 h. The bacterial colonies developed on each plate were counted, and the results are expressed in CFU/mL (Colony Forming Units).

Results and discussion

Sample characterization

X-ray powder diffraction patterns of the starting natural clinoptilolite-rich tuff (P0), oxalic acid pre-treated (P1-H), and sodium hydroxide pre-treated (P2-Na⁺) are shown in Fig. 1.

The main crystalline phase in P0 sample is clinoptilolite, the position and intensities of the reflections correspond to the literature data [64, 68–71]. The peak positions of the reflections in the pre-treated samples P1-H⁺ and P2-Na⁺ are almost the same, with minor changes in position and intensity caused by removal of additionally species, as well as by dealumination of zeolite [72]. Also, during the treatment with oxalic acid, the removal of Ca²⁺, K⁺, Mg^{2+} , and Fe^{3+} ions takes place, an increase of the amorphism and a modification of pore size corresponding to the H-form of clinoptilolite [73]. The main XRD peaks of clinoptilolite are observed at 9.92°, 22.43°, 26.8°, and $30.50^{\circ} 2\theta$. The tuff rich in clinoptilolite has some impurities such as illite (10, 4.49, and 3.33 Å), α -quartz (4.26, 3.34, 2.46, and 1.82 Å), feldspar plagioclase (3.20, 4.038, and 3.758 Å), and plagioclase anortite (3.20, 3.188, and 4.046 Å). In the sample, P1-H pre-treated with oxalic acid is also present calcium oxalate monohydrate (CaC2O4· H_2O) (5.93, 3.657, and 2.975 Å). The elemental composition of natural clinoptilolite-rich tuff (EDX) is presented inside the XRD pattern of sample P0 (Fig. 2).

The ATR-IR spectra of the P1-H, P2-Na⁺ and silver exchanged P1-Ag⁺ and P2-Ag⁺ samples obtained at room temperature at an interval of frequencies $650-4000 \text{ cm}^{-1}$ are shown in ATR-IR spectra of clinoptilolite contain two groups of vibration frequency: the first group of vibrations

Fig. 1 XRD patterns of P0, P1-H, and P2-Na⁺ (inside are the characteristic EDX spectra of the P0 sample)

arises due to internal vibrations of the TO₄ tetrahedron are called asymmetry stretch O-Si(Al)-O, symmetry stretch, and T-O double ring which are observed at 1250-950, 750-650, and 500-420 cm^{-1} , respectively, the second group of vibrations, T-O double ring, symmetry stretch, pore openning, asymmetry stretch related to the linkages between the tetrahedral are observed at 650–500, 750–820, 420–300, and 1150–1050 cm^{-1} , respectively. The band in between 3586 and 3571 cm^{-1} is attributed to the bridging OH-groups in Si-OH-Al and adsorbed water molecules. The band observed in between 1048 and 974 cm^{-1} is more intense one, is assigned to asymetric stretching vibration of the external tetrahedra, O-Si(Al)-O, and is sensitive to the content of the framework silicon and aluminum. The ATR-IR spectra show only small shifts in the bands of the framework [69, 73].

The SEM images and EDX spectra of the natural clinoptilolite pre-treated with oxalic acid (P1-H) and of the silver exchanged (P1-Ag⁺) are presented in Fig. 3.

The SEM images reveal that crystal morphology is composed of flat (blade) and small particles. The particles

Fig. 2 ATR-IR spectra of silver-clinoptilolite (P1-Ag⁺ and P2-Ag⁺) and of pre-treated forms (P1-H and P2-Na⁺)

are closely similar in size and appearance, which suggest that the loading of silver ions do not have effect on the size of the clinoptilolite particles.

The EDX results shows that the Si, Al, O, Ca, K are the principal components of the P1-H sample. When the P1-H was put in contact with NaCl solution and after with silver nitrate to get P1-Ag⁺, the Ca²⁺ ions were exchanged and the constituents are only Si, Al, O, Ag, and K.

Study of antibacterial activity

Escherichia coli and *Staphylococcus aureus* were tested to evaluate the antibacterial capability of the two Ag^+ -clinoptilolite samples, P1-Ag⁺ and P2-Ag⁺. Each of the circular specimens with 5 mm diameter (filter paper with specific pressed sample) was gently pressed on the *E. coli* and *S. aureus* inoculated agar surface before incubation. After incubation at 37 °C for 24 h, bacteria inhibition takes place and a zone of inhibition appears around of Ag⁺-clinoptilolite samples. No clear zone of inhibition was seen around of blank experiments. The strong bactericidal action of silver-clinoptilolite samples P1-Ag⁺ and P2-Ag⁺ is evident for both bacteria, *E. coli* (Fig. 4) and *S. aureus* (Fig. 5).

Fig. 4 Growth inhibition of Ag⁺-clinoptilolite samples P1-Ag⁺ and

 $P2-Ag^+$ for *E. coli*

Blank

To evidence the antibacterial effectiveness, the samples were tested according to the amount of silverclinoptilolite added (mg) in the culture medium (mL). The influence of 0.1 mg Ag⁺-clinoptilolite/mL medium and of 2 mg Ag⁺-clinoptilolite/mL medium on the bacterial growth of *E. coli* is represented in Fig. 6 and on the bacterial growth of *S. aureus* in Fig. 7. It is evident that using 2 mg Ag⁺-clinoptilolite/mL medium the bacterial growth is absent.

Fig. 5 Growth inhibition of Ag^+ -clinoptilolite samples P1- Ag^+ and P2- Ag^+ for *S. aureus*

Taking into account the number of colonies formed (CFU/mL) on the 0.1 mg Ag⁺-clinoptilolite (P1-Ag⁺, P2-Ag⁺)/mL medium and the number of colonies formed on blank, the degree of microbial growth (%) of *E. coli* (Fig. 8) and *S. aureus* (Fig. 9) was calculated.

The antibacterial effect is stronger for the growth of *E. coli* on P1-Ag⁺ sample (18% CFU/mL) compared with *S. aureus* (31.58% CFU/mL). The antibacterial effect of P2-Ag⁺ sample is more pronouncedly for the culture of

Fig. 6 The influence of amount of Ag^+ -clinoptilolite samples P1- Ag^+ and P2- Ag^+ on the growth of the *E. coli*: **a** blank, **b** 0.1 mg Ag^+ -clinoptilolite/mL, **c** 2 mg Ag^+ -clinoptilolite/mL)

Fig. 7 The influence of amount of Ag^+ -clinoptilolite samples P1- Ag^+ and P2- Ag^+ on the growth of the *S. aureus*: **a** blank, **b** 0.1 mg Ag^+ -clinoptilolite/mL, **c** 2 mg Ag^+ -clinoptilolite/mL)

S. aureus (62.71% CFU/mL) compared with 74% CFU/mL of *E. coli*.

According to the results, the bactericidal action of silver-clinoptilolite pre-treated with oxalic acid (P1-Ag⁺) is more pronounced in comparison with silver-clinoptilolite pre-treated with sodium hydroxide (P2-Ag⁺). These two samples differ by the degree of silver exchange: 86.3% (P1-Ag⁺) and 54.5% (P2-Ag⁺). In the sodium hydroxide pre-treatment of natural clinoptilolite-rich tuff, the sodium hydroxide have a limited ability to displace K⁺, Ca²⁺, and Mg^{2+} from the different sites of the network. The bactericidal action of Ag^+ ion is due to its ability to move out of the crystalline network of clinoptilolite into aqueous medium where it is taken up by bacteria and kills them. Na⁺ counter-ion (the most weakly bond ion in clinoptilolite) is considered an essential element for microorganisms and does not exhibit bactericidal activity [25, 60].

Generally, the antibacterial mechanism of chemical agents depends on their specific binding with surface and the metabolism of agents into the microorganism. Silver-clinoptilolite

Fig. 8 Degree of microbial growth (%) for 0.1 mg Ag⁺-clinoptilolite (P1-Ag⁺ and P2-Ag⁺)/mL medium for *E. coli*

Fig. 9 Degree of microbial growth (%) for 0.1 mg Ag⁺-clinoptilolite (P1-Ag⁺ and P2-Ag⁺)/mL medium for *S. aureus*

P1-Ag⁺ effectively inhibited bacterial growth of *E. coli* and silver-clinoptilolite P2-Ag⁺ inhibited the bacterial growth of *S. aureus*.

The antibacterial power of P1-Ag⁺ may be associated with some characteristics of bacterial species. Grampositive bacteria (such as S. aureus) are less susceptible to Ag^+ ion than Gram-negative bacteria (such as *E. coli*) due to differences in their membrane structure. The Grampositive bacteria have more peptidoglycan than Gramnegative bacteria because of their thicker cell walls, and because peptidoglycan is negatively charged and silver are positively charged, more silver ions may get trapped by peptidoglycan in Gram-positive bacteria than in Gramnegative bacteria [37]. Silver cation (Ag⁺) binds to electron donor groups thio, amino, imidazole carboxylate and phosphate containing sulfur, oxygen, and nitrogen which leads to the inactivation of the bacteria [15, 16, 44, 45, 47]. Silver ions also cause the formation of hydrogen peroxide that catalyzes the destructive oxidation of bacteria [15, 28].

Conclusions

The obtained results show that silver ions, Ag^+ localized in the different sites of clinoptilolite structure play an important role for the inhibition of *E. coli* and *S. aureus* growth. The bactericidal effect of silver-modified natural clinoptilolite on both bacteria is dependent of the amount of silver-clinoptilolite added in the culture medium. The use of 2 mg Ag⁺-clinoptilolite/mL medium of both samples as antibacterial agent is adequate to stop the growth of E. coli and S. aureus. But if the amount is only 0.1 mg Ag⁺-clinoptilolite/mL medium, the degree of microbial growth of E. coli on natural clinoptilolite pre-treated with oxalic acid (P1-Ag⁺) corresponds to 18% (CFU/mL) and 31.58% (CFU/mL) for S. aureus. In the same conditions, 0.1 mg Ag⁺-clinoptilolite pre-treated with sodium hydroxide (P2-Ag⁺) assure one degree of microbial growth of 62.71% (CFU/mL) for S. aureus and 74% (CFU/mL) for E. coli. The bactericidal action of silver-clinoptilolite pretreated with oxalic acid (P1-Ag⁺) is more pronounced in comparison with silver-clinoptilolite pre-treated with sodium hydroxide (P2-Ag⁺) due to the different degree of silver exchange and to different ability of silver ions to move out of crystalline network.

Acknowledgements Claudia-Mihaela Hristodor is supported by a POSDRU/89/1.5/S/49944, "Developing the innov," Alexandru Ioan Cuza University, Iasi.

Conflict of interest The other authors declare that they have no potential conflicts of interest to disclose.

References

- Alcamo IE (2004) Microbes and society: an introduction to microbiology, 2nd edn. Jones and Bartlet Publishers, Sudbury, MA, pp 339–342
- 2. Top A, Ülkü S (2004) Appl Clay Sci 27(1-2):13
- 3. Chen X, Schluesener HJ (2008) Toxicol Lett 176:1
- Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR (2007) Rev Environ Contam Toxicol 191:23
- Son H, Cho M, Kim J, Oh B, Chung H, Yoon J (2005) Water Res 39:7211
- 6. Koivunen J, Heinonen-Tanski H (2005) Water Res 39:1519
- 7. Grujer N, Von-Guten U (2003) Water Res 37:1667
- 8. Landsdown AB (2002) J Wound Care 11(45):125
- 9. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275(1):177
- 10. Song HY, Ko KK, Oh IH, Lee BT (2006) Eur Cells Mater 11:58
- Joyakumar R, Lee YS, Rajkumar M, Nanjundan S (2004) J Appl Polym Sci 91:288
- 12. Jiang S, Wang L, Yu H, Chen Y, Shi Q (2006) J Appl Polym Sci 99:2389
- 13. Russell AD, Hugo WB (1994) Prog Med Chem 31:351
- 14. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 271:76
- 15. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res A 52(4):662
- Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Biomaterials 21:393
- 17. Sotiriou GA, Pratsinis SE (2010) Environ Sci Technol 44(14):5649
- Lanje AS, Sharma SJ, Pode RB (2010) J Chem Pharm Res 2(3):478
- 19. Lansdown AB (2004) Br J Nurs 13:S6

- 20. Li Y, Leung P, Yao L, Song QW, Newton E (2006) J Hosp Infect 62(1):58
- Madhumathi K, Sudhceh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) J Mater Sci Mater Med 21:807
- 22. El-Rafic MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Carbohydr Polym 80(3):779
- Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S (2008) CMU J Nat Sci (Special Issue on Nanotechnology) 7(1):33
- 24. Necula AM, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S (2010) J Polym Anal Charact 15:341
- 25. De la Rosa-Gomez I, Olguin MT, Alcantara D (2008) J Environ Manag 88:853
- Rivera-Garza M, Olguin MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2000) Microporous Mesoporous Mater 39:431
- Milan Z, De las Pozas C, Cruz M, Borja R, Sanchez E, Angonavan K, Espinosa Y, Luna B (2001) J Environ Sci Health A 36(6):1073
- Inoue Y, Hoshino M, Takahashi H, Naguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) J Inorg Biochem 92(1):37
- 29. Quintavalla S, Vicini I (2002) Meat Sci 62:373
- Appendini P, Hotchkiss JH (2002) Innov Food Sci Emerg Technol 3(2):113
- Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Nobile M, Del MA (2010) J Food Protect 73(12):2256
- 32. Trogolo KA (2010) Med Devices Diagnos Ind 32(8)
- Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R (2008) J Am Med Assoc 300(7):805
- Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) Biomaterials 25(18):4383
- Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) J Antimicrob Chemother 54:1019
- Galeano B, Korff E, Nicholson WL (2003) Appl Environ Microbiol 69:4329
- 37. Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16(6):452
- Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) Infection 27:16
- Ong S, Wu J, Moochhala SM, Tan M, Lu J (2008) Biomaterials 29(32):4323
- 40. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139
- 41. Klasen HJ (2000) Burns 26(2):131
- 42. Kim SS, Park JE, Lee J (2011) J Appl Polym Sci 119(4):2261
- Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) J Mater Sci Mater Med 20(11):2361
- 44. Schierholz JM, Beuth J, Pulverer G, Konig DP (1999) Antimicrob Agents Chemother 43:2819
- Keleher J, Jennifer B, Heldt N, Johnson L, Li Y (2002) World J Microbiol Biotechnol 18:133

- 46. Bellantone M, Williams HD, Hench LL (2002) Antimicrob Agents Chemother 46:1940
- 47. Jeon HJ, Yi SC, Oh SG (2003) Biomaterials 24(27):4921
- 48. Toshikazu T (1999) Inorg Mater 6:505
- 49. Catauro M, Raucci M, Gaetano G, De F, Marotta A (2004) J Mater Sci Mater Med 15:831
- 50. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) J Biomed Mater Res A 66(2):266
- 51. Ozdemir G, Limoncu MH, Yapar S (2010) Appl Clay Sci 48:319
- Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, Leon L, Freile-Pelerin Y, Lopez T, Torres Sanchez RM (2008) J Mol Catal A 281:192
- Zhang Y, Zhong S, Zhang M, Lin Y (2009) J Mater Sci 44:457. doi:10.1007/s10853-008-3129-5
- Matsumura Y, Yoshikata K, Kunisaki S, Truchido T (2003) Appl Environ Microbiol 69(7):4278
- Kirov GN, Terziiski G (1997) In: Kirov G, Filizova L, Petrov O (eds) Natural zeolites Sofia'95. PENSOFT Publishers, Sofia-Moscow, pp 133–141
- 56. Inoue Y, Kanzaki Y (1997) J Inorg Biochem 67(1):377
- Hagiwara Z, Ishino H, Nohara S, Tagawa K, Yamanaka K (1990) US Patent 4,911,898; 4,911,899
- Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) J Appl Microbiol 104(5):1516
- 59. Lv L, Luo Y, Ng WJ, Zhao XS (2009) Microporous Mesoporous Mater 120:304
- De la Rosa-Gomez I, Olguin MT, Alcantara D (2010) J Mex Chem Soc 54(3):139
- 61. Concepcion-Rosabal B, Bogdanchikova N, De la Rosa I, Olguin MT, Alcantara D, Rodriguez-Fuentes G (2006) In: Book of the abstracts of the 7th international conference on the occurrence, properties and utilization of natural zeolites, pp 88–89
- Concepcion-Rosabal B, Rodriguez-Fuentes G, Bogdanchikova N, Bosch P, Avalos M, Lara VH (2005) Microporous Mesoporous Mater 86:249
- 63. Bright KR, Gerba CP, Rusin PA (2002) J Hosp Infect 52:307
- 64. Koyama K, Takeuchi Y (1977) Z Kristallogr 145:216
- 65. Tanaka Y, Yamasaki N, Muratani M, Hino R (2003) Mater Res Bull 38:713
- 66. Dibrov P (2002) Antimicrob Agents Chemother 46(8):2668
- Arcoya A, Gonzales JA, Llabel G, Seona XL, Travieso N (1996) Microporous Mater 7:1
- 68. Woods RM, Gunter ME (2001) Am Mineral 86:424
- 69. Breck DW (1974) Zeolites molecular sieves: structure, chemistry and use. John Wiley & Sons Inc, New York
- Szostak R (1992) Handbook of molecular sieves. Van Nostrand Reinhold, New York, pp 126–132
- 71. JCPDS Powder Diffraction File (1973) File No. 22-1236
- 72. Watanabe Y, Yamada H, Tanaka J, Moriyoshi Y (2005) J Chem Technol Biotechnol 80:376
- Korkuna O, Leboda R, Skubiszewska-Zieba, Vrubelvs'ka T, Gun'ko VM, Ryczkowski J (2005) Microporous Mesoporous Mater 87:243